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Does stochastic resonance occur in periodic potentials?
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The possibility of observing stochastic resonaf8B) in a periodic potential without a static bias, driven by
noise and an oscillating field, is investigated in both limits of damping. It is shown from the matrix continued
fraction method that, although an underdamped Brownian particle moving in a periodic potential displays a
dynamical resonance facilitated by noise, there is no conventional SR irrespective of damping. The reason such
SR cannot be observed in an overdamped regime is demonstrated by a hopping model. Due to the unbound
motion in the periodic potential, transition probability decays algebraically and there is no persistent synchro-
nized hopping. However, the noise-induced enhancement of the diffusion constant related to escape rate
enhancement exhibits an SR-like behavior. A comparison with the dynamics on a circle as a different example
of an unbound system is givef51063-651X98)50706-4

PACS numbeps): 05.40+j, 66.30.Dn

The stochastic resonan€8R) is a synchronization of a ics and chemistry11], such as motion of ions in superionic
dynamical variable, for example, the position of a Brownianconductors[12], fluctuations of the Josephson supercurrent
particle, with external driving force, which emerges as a co4n tunneling junctiong13], and relaxation dynamics of rota-
operation of the external driving and random noise in nontors [14]. Although SR and the associated noise-induced
linear dynamical systems. Contrary to common sense, théansportin a periodic potential with a bias have been inves-
coherent response of a system to an external driving forcBgated recently15,16], the SR driven only by time periodic
can be enhanced by the noise, tending to be the maximum gkternal force is not clearly understood yet. The main pur-
an optimal noise strength, in which the period of externalPose of this work is to investigate the possibility of SR for
driving matches the internal time scale. the dynamics in periodic potential for various ranges of

Since SR was originally proposed to explain the periodicdamping. . _ _
recurrences of the earth’s ice aga$ there have been many  The one-dimensional Brownian motion of a tagged par-
theoretical developments of SR in conventional bistable systicle of massm in a potentialU(x) under external driving
tems. McNamara and Wiesenfdl®] have suggested a mas- A COswt can be described by the Langevin equation
ter equation for the populations in two stable states. While JU
they considered the signal-to-noise ratio, i.e., the ratio of the mX+ myx+ )
6 peak height in the power spectrum to the noise background X
as a probe of SR effect, Zhou, Moss, and Jy§ have
suggested the escape time distribution to describe SR. Ju
and Hanggi [4] described SR within the framework of non- X Lo
stationary stochastic processes without restriction to smaff?® fluctuation-dissipation theorem
driving amplitudes or frequepcies, Whg_re t_hey presented (R(OR(0))=2myksT5(t)=2D &(1). )
power spectral densities and signal amplification as measures
of SR. They also have predicted the subharmonics in thas an example of the periodic potential with periodicity
power spectrum and its selection rules for symmetric poteny (x+a)=U(x), we consider a sinusoidal potential
tials.

There are a great deal of applications of SR, ranging from
a global climate mod€]ll], electronic circuits, e.g., Schmitt
triggers[5], and a bidirectional ring lasd6] to biological
systemd7,8]. While the overwhelming majority of the work where wy=2#/ayAU/2m is the natural frequency at the
has been concerned with bistable systems, SR is found to mttom of the potential well andU is the potential barrier
more widespread in nature. For example, nonconventionaieight. Both—[ U (x)]/dx andR(t) originate from the bath
SR has been reported in monostable wells where inertial efand describe respectively the systematic and rapidly fluctu-
fects are important9]. Wiesenfeldet al. [10] demonstrated ating parts of the force on the tagged particle. The Fokker-
that SR is expected to be observable in excitable dynamicBlanck equation that is equivalent to the Langevin equation
with deterministic reinjection, “threshold-plus-reinjection [Eq. (1)] is
dynamics,” involving the dynamics on a circle that is mul-
tistable. However, the presence of SR in periodic potential is IP(x,v,t)
still questionable. ot

The dynamics of a Brownian particle in a periodic poten-
tial is an important problem with many applications in phys-where

=A coswt+R(t), (1)

|Jgperey is the damping constant, the random foR) is a
aussian white noise connected with a noise streBgtlia

2 v
cos?x, 3)

1 2w o[ @
U(X)Z—EAU cos?x=—mw ﬂ

:EFPP(X,U,t), (4)
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FIG. 1. Signal power amplification factor as a function of fre-
quency and noise strength in underdamped regimes cm 2.
The characteristic frequency of potential is 88 cm !, which

remains the same throughout.

FIG. 2. Signal power amplification factor in an overdamped
regime y=200 cm !. The power amplification increases mono-
tonically with respect to the noise strength around the interwell
hopping frequency regim@(1) cm 2.

Lep= _vi+(aU(x) —A cosm)i that MCFM can provide a nearly exact numerical solution
ox | mdx v for a Brownian particle in a periodic wellL9]. In this study,
the number of matrix elements used for numerical evaluation
d keT o .
+— yw+y——|. (5 was 23 and it was shown that the convergences of results are
du m dv good enough to assure their validity as an excellent approxi-

Now suppose that the external driving force has a smal
amplitude so that linear-response thedbRT) is applied.
By LRT, the response of the system to the perturbing influ
ence of an external field can be described entirely in terms
stationary time-correlation functions that are characteristic o

the system in the absence of the field. LRT makes it possiblg‘l
to predict the onset of SR solely in terms of the spectrar

density of the correlation in the absence of periodic driving
and its dependence on temperat(reise strength The sig-
nal power amplificationp(w), a measure of SR, is propor-
tional to the absolute square qf w) [17], a dynamic re-
sponse function (frequency-dependent susceptibilityof
position to external force, which is related to the Fourier
transform of velocity correlation function(frequency-
dependent mobility u(w)=—iwy(w), via

1
77(w)=I)((w)|2=E|M(w)|2- (6)
In the above,
_ 1 * d —iwt
X(w)——kB—Tfo a<x(t)x(0)>e dt, 7
_ 1 < —iwt
mw)—kB—Tfo (v(to(0))e~“tdt, 8)

and ( ) denotes the average over the stationary-state en-

semble. Due to the relation in E), it suffices to consider
the time-correlation function of velocity along with the mo-
bility for SR, even if the position has to be the only relevant
variable in overdamped systems and the time-correlatio
functions of position along with the susceptibility have to be
considered. Therefor¢u(w)|/w is evaluated as a probe for
SR in this paper.

Q

‘nation to the exact one even in the case of very low damp-
ing. The|u(w)|/w, controlled by the temperature, is shown
in a low damping regimey=5 cm ! (Fig. 1), and a high
(iiamping regimey=200 cmi ! (Fig. 2. We employ the unit

in accordance with the convention in superionic conductors
nd setw, to be 88 cm?. The|u(w)|/w in a low damping
egime has a peak around the natural frequesgywhich

also shows resonance behavior with respect to the noise
strength, i.e., temperature as more explicitly seen in Fig. 3.
The resonance behavior is more pronounced as damping de-
creases. However, this resonance behavior is not the SR as-
sociated with interwell hopping, but a noise-facilitated stan-
dard dynamical resonance, mentioned by Dykragal. [9],
which originates from the intrawell motion. The interwell
hopping frequency is much smaller thag and is estimated

to be O(1) cm ! according to the escape rate in bimeta-
stable potentig]20]. Since the power amplification increases
monotonically as a function of temperature around the inter-
well hopping frequency regimg@-ig. 3), it can be concluded
that the SR, due to the hopping synchronized with modula-
tion, does not exist in periodic structure.

n 2T/ A

FIG. 3. Curve(a) shows the noise-facilitated standard dynamical
resonance foro=83 cm'! in an underdamped regimey

We present the numerical results for the amplitude of=5 cm . Curve(b) displays the monotonically increasing power

frequency-dependent mobilityu(w)| from the matrix con-
tinued fraction methodMCFM) [11,18. It is well known

! in an overdamped

amplification for ®=3 cm” regimey

=200 cmt.
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Below, a hopping model is suggested to rationalize thehe noncoherent part. The fact that both parts of the transition
above conclusion in an overdamped regime. Neglecting thprobability decay algebraically means that particles diffuse
inertia term in Eq.(1), we write the overdamped Langevin away, which is the most important difference between bound
equation in dimensionless units as bistable and unbound periodic systems.

The dynamics on a circle modeling action potential events
(99 in sensory neurons is known to exhibit $R0]. It is obvi-
o ] ) ~ously a multistable system. As only one-directional hopping
If the external field is weak and adiabatic, the rate of transiis however, allowed., it is a Poisson process. In the presence
tion to the next well is assumed to be of the sinusoidal force, Eq11), adopted to a one-directional
process, yields the Poisson distribution as in R&f],

X= cosx+A coswt+R(t).

W(t)Ne_(AUiA coswt)/D

~\*e COSwt, (10

. € n
P(n,t|0,00=e (\t~ (¢/w) sin “’t)( \t—— sin wt) / n!

8 .
1+ —sin wt) / n'.
w

It is shown that the decay of the coherent part is as slow as

where the zeroth-order transition raxe=e 2YP and the
first-order transition rates=(A/D)e 2V are identified.
For the probability density of a particle localized at tini
potential well, given by P, (t)=[5""""P(x,t) dx, the mas-

=e M(\t)"
A 2nm—a
ter equation reads

(14

P,=(A—¢& coswt)P,.;+(\+& coswt)P,_;—2\P,
=N(Pps1t+Py_1—2P,)—e coswt(P1—Py-1).
11

In solving the equation, the periodic boundary condition

[Phin(t)=P,(1)] is chosen to assure that the process i

S

the noncoherent part from the noise background, which gives
rise to a pronounced peak at the driving frequency in the
power spectrum. Though both the periodic and circle sys-
tems are unbounded, the difference lies in whether or not
“back and forth” hoppings are allowed. When transitions

are made only to one side, the dynamics is a kind of thresh-
old phenomenon counting only the number of hopping

stationary. With the particle set at the site- 0 initially, the
transition probability of finding the particle at the siteafter
timet is given to the first order of straightforwardly,

events or firings during the time interval. In a circle system,
the firing event is interpreted as the transmitted information
in the same way that the interwell switching event is inter-
preted as a signal output in bistable potential. However, the
position of the Brownian particle, rather than the hopping
event itself, has to be considered as signal output in periodic
potential because the position after hoppings is not determin-
istic, unlike the circle system. The answer for SR depends on
the characteristics of the system, namely, which dynamical
variable is chosen to be considered as signal output.
wherel,, is the modified Bessel function of order The As mentioned above, what is to be considered to probe
transition probablhty giveS the Stationary probablhty diStri- SR in the periodic potentia' is not On|y the number Of events
bution in the absence of the external fié¥di=1/N as time  happening, but the position of the particle as a result of hop-
goes to infinity. With the periodicityN set to infinity, to  ping events. The coherent component cannot survive in the
recover the extended system of our concern, the transitiofime-correlation function of positions when particles diffuse
probability is dominated by the=0 term: away. The effect of the signal is to periodically modulate the
hopping rate, which directly affects the diffusion constant.

P(n,tln=0t,=0)

€

=M 14 w—M(nJrIN)sin ot |14 n(2) 1),

|=—o

12

P(n,t|0,00=e 2M 1+ en sin wt|l,(2\t)  for largeN, Enhancement of the diffusion constafit= Iimt_m([x(t)
@ —x(0)]12)/2t, when a periodic signal is applied, can easily be
1 en obtained in our random walk model as
= 1+ —sinwt| forlarget,
2matl @At D(A)
L 3 “(AD)=5az0)
=at” 2+ Bt” 2 sin wt. (13
H 2
As the system siz8l goes to infinity, thed peak at driv- =1+ E 1+ sin zwt)A—e—AU/D, (15)
ing frequency cannot be detected in the power spectrum. The 4 20t |p?

coherently modulated part of the transition probability in the

periodic structure shows the power-law deday’?, while ~ where D(A=0) is the diffusion constant in the periodic
the corresponding quantity in the bistable potential has constructure withoutA coswt. The numerical results of Hu
stant amplitude with respect to time, giving rise to theeak ~ Gang, Daffertshofer, and Hak¢R1] for diffusion in periodic

at driving frequency in the power spectry@t]. The coherent potential is explained by our analytic expression. The transi-
behavior of the power spectrum in the long-time limit doestion rate to the right well is the same as that to the left well
not occur in this extended system because the coherent pda the zeroth order of. However, the escape rateopping

in the transition probability decays algebraically, faster thareveny itself can be maximized at an optimal noise intensity
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AU~D only when it is coupled with external driving. En- generate a periodic contribution in the power spectrum.
hancement of the diffusion constant is related to the escap®ince periodic structure is infinitely extended, the transition
rate enhancement induced by the modulafibi,22 and it  probability exhibits a power-law decay of the coherently os-
displays SR-like behavior. cillating part. This is different from the cases of bounded
In conclusion, SR in the conventional sense takes placgystemgbistable wellg. In a word, there is no synchronized
when the modulation synchronizes hopping and generatesiacessant hopping, namely, SR, because the particle diffuses
periodic contribution to the jump process. It is shownaway. Nevertheless, the enhancement of the diffusion con-
through the numerical computation, MCFM that there is nostant shows SR-like behavior due to the fact that the en-
such SR in periodic potentials in both limits of damping. Thehancement of the escape rate by the modulation is optimized
noise-facilitated ordinary dynamical resonance rooted in thet a certain noise strength in spite of the absence of direc-
motion in the bottom of the well is shown through the powertionality.
amplification factor in the underdamped limit, as discussed
by Dykmanet al. The reason a coherent hopping contribu-
tion cannot be observed in the overdamped limit either is We acknowledge support from a POSTECH BSRI special
qualitatively argued by the transition rate in our hoppingfund, and the BSRI prograrfGrant No. 96-2438, 97-2438
model. It is necessary that the transition probability have aMinistry of Education. We are grateful to P. higgi for
slowly decaying coherent part to the external field in order tostimulating communications.
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