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Does stochastic resonance occur in periodic potentials?

Yong Woon Kim and Wokyung Sung
Department of Physics and School of Environmental Engineering, Pohang University of Science and Technology,

Pohang 790-784, Korea
~Received 10 October 1997!

The possibility of observing stochastic resonance~SR! in a periodic potential without a static bias, driven by
noise and an oscillating field, is investigated in both limits of damping. It is shown from the matrix continued
fraction method that, although an underdamped Brownian particle moving in a periodic potential displays a
dynamical resonance facilitated by noise, there is no conventional SR irrespective of damping. The reason such
SR cannot be observed in an overdamped regime is demonstrated by a hopping model. Due to the unbound
motion in the periodic potential, transition probability decays algebraically and there is no persistent synchro-
nized hopping. However, the noise-induced enhancement of the diffusion constant related to escape rate
enhancement exhibits an SR-like behavior. A comparison with the dynamics on a circle as a different example
of an unbound system is given.@S1063-651X~98!50706-4#

PACS number~s!: 05.40.1j, 66.30.Dn
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The stochastic resonance~SR! is a synchronization of a
dynamical variable, for example, the position of a Browni
particle, with external driving force, which emerges as a
operation of the external driving and random noise in n
linear dynamical systems. Contrary to common sense,
coherent response of a system to an external driving fo
can be enhanced by the noise, tending to be the maximu
an optimal noise strength, in which the period of exter
driving matches the internal time scale.

Since SR was originally proposed to explain the perio
recurrences of the earth’s ice ages@1#, there have been man
theoretical developments of SR in conventional bistable s
tems. McNamara and Wiesenfeld@2# have suggested a ma
ter equation for the populations in two stable states. Wh
they considered the signal-to-noise ratio, i.e., the ratio of
d peak height in the power spectrum to the noise backgro
as a probe of SR effect, Zhou, Moss, and Jung@3# have
suggested the escape time distribution to describe SR.
and Hänggi @4# described SR within the framework of non
stationary stochastic processes without restriction to sm
driving amplitudes or frequencies, where they presen
power spectral densities and signal amplification as meas
of SR. They also have predicted the subharmonics in
power spectrum and its selection rules for symmetric pot
tials.

There are a great deal of applications of SR, ranging fr
a global climate model@1#, electronic circuits, e.g., Schmit
triggers @5#, and a bidirectional ring laser@6# to biological
systems@7,8#. While the overwhelming majority of the work
has been concerned with bistable systems, SR is found t
more widespread in nature. For example, nonconventio
SR has been reported in monostable wells where inertia
fects are important@9#. Wiesenfeldet al. @10# demonstrated
that SR is expected to be observable in excitable dynam
with deterministic reinjection, ‘‘threshold-plus-reinjectio
dynamics,’’ involving the dynamics on a circle that is mu
tistable. However, the presence of SR in periodic potentia
still questionable.

The dynamics of a Brownian particle in a periodic pote
tial is an important problem with many applications in phy
571063-651X/98/57~6!/6237~4!/$15.00
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ics and chemistry@11#, such as motion of ions in superioni
conductors@12#, fluctuations of the Josephson supercurre
in tunneling junctions@13#, and relaxation dynamics of rota
tors @14#. Although SR and the associated noise-induc
transport in a periodic potential with a bias have been inv
tigated recently@15,16#, the SR driven only by time periodic
external force is not clearly understood yet. The main p
pose of this work is to investigate the possibility of SR f
the dynamics in periodic potential for various ranges
damping.

The one-dimensional Brownian motion of a tagged p
ticle of massm in a potentialU(x) under external driving
A cosvt can be described by the Langevin equation

mẍ1mg ẋ1
]U~x!

]x
5A cosvt1R~ t !, ~1!

whereg is the damping constant, the random forceR(t) is a
Gaussian white noise connected with a noise strengthD via
the fluctuation-dissipation theorem

^R~ t !R~0!&52mgkBTd~ t !52Dd~ t !. ~2!

As an example of the periodic potential with periodicitya,
U(x1a)5U(x), we consider a sinusoidal potential

U~x!52
1

2
DU cos

2p

a
x52mv0

2S a

2p D 2

cos
2p

a
x, ~3!

where v052p/aADU/2m is the natural frequency at th
bottom of the potential well andDU is the potential barrier
height. Both2@]U(x)#/]x andR(t) originate from the bath
and describe respectively the systematic and rapidly flu
ating parts of the force on the tagged particle. The Fokk
Planck equation that is equivalent to the Langevin equa
@Eq. ~1!# is

]P~x,v,t !

]t
5LFPP~x,v,t !, ~4!

where
R6237 © 1998 The American Physical Society
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LFP52v
]

]x
1S ]U~x!

m]x
2A cosvt D ]

]v

1
]

]vS gv1g
kBT

m

]

]v D . ~5!

Now suppose that the external driving force has a sm
amplitude so that linear-response theory~LRT! is applied.
By LRT, the response of the system to the perturbing in
ence of an external field can be described entirely in term
stationary time-correlation functions that are characteristic
the system in the absence of the field. LRT makes it poss
to predict the onset of SR solely in terms of the spec
density of the correlation in the absence of periodic driv
and its dependence on temperature~noise strength!. The sig-
nal power amplificationh(v), a measure of SR, is propo
tional to the absolute square ofx(v) @17#, a dynamic re-
sponse function ~frequency-dependent susceptibility! of
position to external force, which is related to the Four
transform of velocity correlation function~frequency-
dependent mobility!, m(v)52 ivx(v), via

h~v!5ux~v!u25
1

v2
um~v!u2. ~6!

In the above,

x~v!52
1

kBTE0

` d

dt
^x~ t !x~0!&e2 ivtdt, ~7!

m~v!5
1

kBTE0

`

^v~ t !v~0!&e2 ivtdt, ~8!

and ^ & denotes the average over the stationary-state
semble. Due to the relation in Eq.~6!, it suffices to consider
the time-correlation function of velocity along with the m
bility for SR, even if the position has to be the only releva
variable in overdamped systems and the time-correla
functions of position along with the susceptibility have to
considered. Therefore,um(v)u/v is evaluated as a probe fo
SR in this paper.

We present the numerical results for the amplitude
frequency-dependent mobility,um(v)u from the matrix con-
tinued fraction method~MCFM! @11,18#. It is well known

FIG. 1. Signal power amplification factor as a function of fr
quency and noise strength in underdamped regimeg55 cm21.
The characteristic frequency of potentialv0 is 88 cm21, which
remains the same throughout.
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that MCFM can provide a nearly exact numerical soluti
for a Brownian particle in a periodic well@19#. In this study,
the number of matrix elements used for numerical evalua
was 23 and it was shown that the convergences of results
good enough to assure their validity as an excellent appr
mation to the exact one even in the case of very low dam
ing. Theum(v)u/v, controlled by the temperature, is show
in a low damping regime,g55 cm21 ~Fig. 1!, and a high
damping regime,g5200 cm21 ~Fig. 2!. We employ the unit
in accordance with the convention in superionic conduct
and setv0 to be 88 cm21. The um(v)u/v in a low damping
regime has a peak around the natural frequencyv0, which
also shows resonance behavior with respect to the n
strength, i.e., temperature as more explicitly seen in Fig
The resonance behavior is more pronounced as damping
creases. However, this resonance behavior is not the SR
sociated with interwell hopping, but a noise-facilitated sta
dard dynamical resonance, mentioned by Dykmanet al. @9#,
which originates from the intrawell motion. The interwe
hopping frequency is much smaller thanv0 and is estimated
to beO(1) cm21 according to the escape rate in bimet
stable potential@20#. Since the power amplification increase
monotonically as a function of temperature around the in
well hopping frequency regime~Fig. 3!, it can be concluded
that the SR, due to the hopping synchronized with modu
tion, does not exist in periodic structure.

FIG. 2. Signal power amplification factor in an overdamp
regime g5200 cm21. The power amplification increases mon
tonically with respect to the noise strength around the interw
hopping frequency regimeO(1) cm21.

FIG. 3. Curve~a! shows the noise-facilitated standard dynamic
resonance for v583 cm21 in an underdamped regimeg
55 cm21. Curve~b! displays the monotonically increasing pow
amplification for v53 cm21 in an overdamped regimeg
5200 cm21.
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Below, a hopping model is suggested to rationalize
above conclusion in an overdamped regime. Neglecting
inertia term in Eq.~1!, we write the overdamped Langevi
equation in dimensionless units as

ẋ5 cosx1A cosvt1R~ t !. ~9!

If the external field is weak and adiabatic, the rate of tran
tion to the next well is assumed to be

W~ t !;e2~DU6A cosvt !/D

'l6« cosvt, ~10!

where the zeroth-order transition ratel5e2DU/D and the
first-order transition rate«5(A/D)e2DU/D are identified.
For the probability density of a particle localized at thenth
potential well, given byPn(t)5*2np2p

2np1pP(x,t) dx, the mas-
ter equation reads

Ṗn5~l2« cosvt !Pn111~l1« cosvt !Pn2122lPn

5l~Pn111Pn2122Pn!2« cosvt~Pn112Pn21!.

~11!

In solving the equation, the periodic boundary conditi
@Pn1N(t)5Pn(t)# is chosen to assure that the process
stationary. With the particle set at the siten50 initially, the
transition probability of finding the particle at the siten after
time t is given to the first order of« straightforwardly,

P~n,tun50,t050!

5e22lt (
l 52`

` F11
«

vlt
~n1 lN !sin vt G I n1 lN~2lt !,

~12!

where I n is the modified Bessel function of ordern. The
transition probability gives the stationary probability dist
bution in the absence of the external fieldPst51/N as time
goes to infinity. With the periodicityN set to infinity, to
recover the extended system of our concern, the trans
probability is dominated by thel 50 term:

P~n,tu0,0!5e22ltF11
«n

vlt
sin vt G I n~2lt ! for largeN,

5
1

A2plt
F11

«n

vlt
sin vt G for larget,

5at2
1
21bt2

3
2 sin vt. ~13!

As the system sizeN goes to infinity, thed peak at driv-
ing frequency cannot be detected in the power spectrum.
coherently modulated part of the transition probability in t
periodic structure shows the power-law decayt23/2, while
the corresponding quantity in the bistable potential has c
stant amplitude with respect to time, giving rise to thed peak
at driving frequency in the power spectrum@2#. The coherent
behavior of the power spectrum in the long-time limit do
not occur in this extended system because the coherent
in the transition probability decays algebraically, faster th
e
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the noncoherent part. The fact that both parts of the transi
probability decay algebraically means that particles diffu
away, which is the most important difference between bou
bistable and unbound periodic systems.

The dynamics on a circle modeling action potential eve
in sensory neurons is known to exhibit SR@10#. It is obvi-
ously a multistable system. As only one-directional hopp
is, however, allowed, it is a Poisson process. In the prese
of the sinusoidal force, Eq.~11!, adopted to a one-directiona
process, yields the Poisson distribution as in Ref.@10#,

P~n,tu0,0!5e2~lt2 ~«/v! sin vt !S lt2
«

v
sin vt D nY n!

>e2lt~lt !nS 11
«

v
sin vt D Y n!. ~14!

It is shown that the decay of the coherent part is as slow
the noncoherent part from the noise background, which gi
rise to a pronounced peak at the driving frequency in
power spectrum. Though both the periodic and circle s
tems are unbounded, the difference lies in whether or
‘‘back and forth’’ hoppings are allowed. When transition
are made only to one side, the dynamics is a kind of thre
old phenomenon counting only the number of hoppi
events or firings during the time interval. In a circle syste
the firing event is interpreted as the transmitted informat
in the same way that the interwell switching event is int
preted as a signal output in bistable potential. However,
position of the Brownian particle, rather than the hoppi
event itself, has to be considered as signal output in perio
potential because the position after hoppings is not determ
istic, unlike the circle system. The answer for SR depends
the characteristics of the system, namely, which dynam
variable is chosen to be considered as signal output.

As mentioned above, what is to be considered to pro
SR in the periodic potential is not only the number of eve
happening, but the position of the particle as a result of h
ping events. The coherent component cannot survive in
time-correlation function of positions when particles diffu
away. The effect of the signal is to periodically modulate t
hopping rate, which directly affects the diffusion consta
Enhancement of the diffusion constantD5 lim

t→`
^@x(t)

2x(0)#2&/2t, when a periodic signal is applied, can easily
obtained in our random walk model as

k~A,D !5
D~A!

D~A50!

511
1

4S 11
sin 2vt

2vt D A2

D2
e2DU/D, ~15!

where D(A50) is the diffusion constant in the periodi
structure withoutA cosvt. The numerical results of Hu
Gang, Daffertshofer, and Haken@21# for diffusion in periodic
potential is explained by our analytic expression. The tran
tion rate to the right well is the same as that to the left w
to the zeroth order of«. However, the escape rate~hopping
event! itself can be maximized at an optimal noise intens
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DU'D only when it is coupled with external driving. En
hancement of the diffusion constant is related to the esc
rate enhancement induced by the modulation@17,22# and it
displays SR-like behavior.

In conclusion, SR in the conventional sense takes pl
when the modulation synchronizes hopping and generat
periodic contribution to the jump process. It is show
through the numerical computation, MCFM that there is
such SR in periodic potentials in both limits of damping. T
noise-facilitated ordinary dynamical resonance rooted in
motion in the bottom of the well is shown through the pow
amplification factor in the underdamped limit, as discuss
by Dykmanet al. The reason a coherent hopping contrib
tion cannot be observed in the overdamped limit eithe
qualitatively argued by the transition rate in our hoppi
model. It is necessary that the transition probability hav
slowly decaying coherent part to the external field in orde
tt
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generate a periodic contribution in the power spectru
Since periodic structure is infinitely extended, the transit
probability exhibits a power-law decay of the coherently o
cillating part. This is different from the cases of bound
systems~bistable wells!. In a word, there is no synchronize
incessant hopping, namely, SR, because the particle diffu
away. Nevertheless, the enhancement of the diffusion c
stant shows SR-like behavior due to the fact that the
hancement of the escape rate by the modulation is optim
at a certain noise strength in spite of the absence of di
tionality.
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